lunes, 23 de marzo de 2015

EQUILIBRIO ROTACIONAL

Equilibrio rotacional
 
Es aquel equilibrio que ocurre cuando un cuerpo sufre un movimiento de rotación o giro, al igual que el equilibrio traslacional debe también equilibrarse; surge en el momento en que todas las torcas que actúan sobre el cuerpo sean nulas, o sea, la sumatoria de las mismas sea igual a cero.
EMx= 0
EMy= 0
su fuerza se mide en torques o torcas es una magnitud (pseudo)vectorial, obtenida como producto vectorial del vector de posición del punto de aplicación de la fuerza con respecto al punto al cual se toma el momento por la fuerza. Explicado de una forma mas sencilla el torque es el producto entre la fuerza aplicada y la distancia a la cual se la aplica medida, generalmente, desde el punto que permanece fijo.
Así como una fuerza provoca una traslación, un torque produce una rotación.
El torque mide, de alguna manera, el estado de rotación que provoca la fuerza o la tendencia a producir una rotación. Del mismo modo que puede evitarse el desplazamiento de un objeto aplicando una fuerza contraria a la que lo hace mover, puede evitarse una rotación aplicando un torque contrario al que lo hace girar.
Ejemplos de rotación y su fuerzas aplicadas


CONDICION DE EQUILIBRIO DE ROTACIÓN

Si a un cuerpo que puede girar alrededor de un eje, se la aplican varias fuerzas y no producen variación en su movimiento de rotación, se dice que el cuerpo puede estar en reposo o tener movimiento uniforme de rotación.
Para que exista este equilibrio se presentan los siguientes factores

a) Par de fuerzas: Se produce un par de fuerzas cuando dos fuerzas paralelas de la misma magnitud pero en sentido contrario actúan sobre un cuerpo, su resultante es igual a cero y su aplicación esta en el centro de la línea que une los puntos de inicio de las fuerzas componentes.

b) Momento de una fuerza: Llamado también momento de torsión o torque y se define como la capacidad que tiene una fuerza para hacer girar un cuerpo, es decir es la intensidad con que una fuerza tiende a comunicarle un movimiento de rotación. El momento de una fuerza se obtiene multiplicando el valor de la fuerza por su brazo de palanca.

c)Centro de gravedad.
El centro de gravedad (CG) es el punto de aplicación de la resultante de todas las fuerzas de gravedad que actúan sobre las distintas masas materiales de un cuerpo, de tal forma que el momento respecto a cualquier punto de esta resultante aplicada en el centro de gravedad es el mismo que el producido por los pesos de todas las masas materiales que constituyen dicho cuerpo. En otras palabras, el centro de gravedad de un cuerpo es el punto respecto al cual las fuerzas que la gravedad ejerce sobre los diferentes puntos materiales que constituyen el cuerpo producen un momento resultante nulo (dicho punto no necesariamente corresponde a un punto material del cuerpo, ya que puede estar situado fuera de él.

d)Equilibrio estático: existe un equilibrio estático cuando todas las fuerzas que actúan
sobre todos los componentes de un sistema están equilibradas.

e)Vectores: un vector es una magnitud que tiene dos características: módulo, o magnitud,
y dirección. Los vectores normalmente se dibujan como flechas. Una fuerza y el
momento de una fuerza son magnitudes vectoriales

Aplicaciones de el equilibrio rotacional
El equilibrio rotacional se puede aplicar en todo tipo de instrumentos en los cuales se requiera aplicar una o varias fuerzas o torques para llevar a cabo el equilibrio de un cuerpo. Entre los instrumentos más comunes están la palanca, La balanza romana, la polea, el engrane, etc.

EQUILIBRIO TRASLACIONAL

Equilibrio traslacional

INTRODUCCIÓN

El estudio del equilibrio de los cuerpos bajo la acción de un sistema de fuerzas es el objeto de la estática, que es una parte de la física de decisiva importancia en aspectos tales como la determinación de la estabilidad de una construcción metálica, el diseño de un puente colgante o el cálculo de cualquier estructura de una obra civil. El manejo de los sistemas de fuerzas, incluyendo las del peso y las de reacción, y el cálculo de la magnitud momento constituyen elementos esenciales de esta ciencia del equilibrio mecánico.

Las características que definen un cuerpo material están directa o indirectamente relacionadas con las fuerzas. Todos los cuerpos pueden ser considerados como agregados de partículas unidas entre sí por fuerzas cuya intensidad varía desde la débil atracción gravitatoria, en el caso de una nebulosa, hasta las intensas fuerzas eléctricas de enlace entre los átomos de carbono en un cristal de diamante.

En ambos casos extremos es un conjunto de fuerzas el que hace que las diferentes partículas componentes constituyan un todo. Cuando un sistema de fuerzas es tal que cancelan mutuamente sus efectos, se tiene una situación de equilibrio.
Equilibrio Traslacional
Un cuerpo se encuentra en equilibrio traslacional cuando la sumatoria de todas las componentes en X es igual a 0 y todas las componentes en Y es igual a 0.
Cuando un cuerpo esta en equilibrio traslacional no tiene fuerza resultante actuando sobre el.




EJEMPLO DE PROBLEMA DE APLICACIÓN:
Una caja de 8 N está suspendida por un alambre de 2 m que forma un ángulo de 45° con la vertical. ¿Cuál es el valor de las fuerzas horizontal y en el alambre para que el cuerpo se mantenga estático?.
Primero se visualiza el problema de la siguiente manera:
A continuación se elabora su diagrama de cuerpo libre.
Ahora por medio de la descomposición de los vectores, calculamos la fuerza de cada uno de ellos.
F1x = - F1 cos 45°*
F1y = F1 sen 45°
F2x = F2 cos 0° = F2
F2y = F2sen0°=0
F3x = F3cos90°=0
F3y = - F3 sen 90° = - 8 N*
Porque los cuadrantes en los que se localizan son negativos.

Como únicamente conocemos los valores de F3, F2 y la sumatoria debe ser igual a cero en x e y, tenemos lo siguiente:
EFx=F1x+F2x+F3x=0
EFy=F1y+F2y+F3y=0
Por lo tanto tenemos lo siguiente:
EFx=-F1 cos 45+F2=0
          F2=F1(0.7071)
EFy=-F1sen45-8N=0
          8N=F1(0.7071)
          F1=8N/0.7071=11.31 N
Para calcular F2, se sustituye F1 de la ecuación siguiente:
F2=F1(0.7071)
F2=11.31(0.7071)=8N


LEYES DE NEWTON

leyes de Newton

¿Qué son las Leyes de Newton?

Las Leyes de Newton, también conocidas como Leyes del movimiento de Newton,1 son tres principios a partir de los cuales se explican la mayor parte de los problemas planteados por la dinámica, en particular aquellos relativos al movimiento de los cuerpos. Revolucionaron los conceptos básicos de la física y el movimiento de los cuerpos en el universo, en tanto que
Constituyen los cimientos no sólo de la dinámica clásica sino también de la física clásica en general. Aunque incluyen ciertas definiciones y en cierto sentido pueden verse como axiomas, Newton afirmó que estaban basadas en observaciones y experimentos cuantitativos; ciertamente no pueden derivarse a partir de otras relaciones más básicas. La demostración de su validez radica en sus predicciones… La validez de esas predicciones fue verificada en todos y cada uno de los casos durante más de dos siglos.

Las leyes

De manera Generalizada, las 3 leyes de Sir Isaac Newton son:

Primera Ley o Ley de Inercia

Todo cuerpo permanece en su estado de reposo o de movimiento rectilíneo uniforme a menos que otros cuerpos actúen sobre él.

Segunda ley o Principio Fundamental de la Dinámica

La fuerza que actúa sobre un cuerpo es directamente proporcional a su aceleración.

Tercera ley o Principio de acción-reacción

Cuando un cuerpo ejerce una fuerza sobre otro, éste ejerce sobre el primero una fuerza igual y de sentido opuesto.

Primera Ley o Ley de la Inercia

La primera ley del movimiento rebate la idea aristotélica de que un cuerpo sólo puede mantenerse en movimiento si se le aplica una fuerza. Newton expone que:
Todo cuerpo persevera en su estado de reposo o movimiento uniforme y rectilíneo a no ser que sea obligado a cambiar su estado por fuerzas impresas sobre él.
La primera ley de Newton, conocida también como Ley de inercia, nos dice que si sobre un cuerpo no actúa ningún otro, este permanecerá indefinidamente moviéndose en línea recta con velocidad constante (incluido el estado de reposo, que equivale a velocidad cero).
Como sabemos, el movimiento es relativo, es decir, depende de cuál sea el observador que describa el movimiento.
Así, para un pasajero de un tren, el interventor viene caminando lentamente por el pasillo del tren, mientras que para alguien que ve pasar el tren desde el andén de una estación, el interventor se está moviendo a una gran velocidad. Se necesita, por tanto, un sistema de referencia al cual referir el movimiento.

1ra Ley de Newton: Ley de la Inercia
 
La primera ley de Newton sirve para definir un tipo especial de sistemas de referencia conocidos como Sistemas de referencia inerciales, que son aquellos sistemas de referencia desde los que se observa que un cuerpo sobre el que no actúa ninguna fuerza neta se mueve con velocidad constante.
De manera concisa, esta ley postula, que un cuerpo no puede cambiar por sí solo su estado inicial, ya sea en reposo o en movimiento rectilíneo uniforme, a menos que se aplique una fuerza o una serie de fuerzas cuyo resultante no sea nulo sobre él.
Newton toma en cuenta, así, el que los cuerpos en movimiento están sometidos constantemente a fuerzas de roce o fricción, que los frena de forma progresiva, algo novedoso respecto de concepciones anteriores que entendían que el movimiento o la detención de un cuerpo se debía exclusivamente a si se ejercía sobre ellos una fuerza, pero nunca entendiendo como esta a la fricción.
En consecuencia, un cuerpo con movimiento rectilíneo uniforme implica que no existe ninguna fuerza externa neta o, dicho de otra forma, un objeto en movimiento no se detiene de forma natural si no se aplica una fuerza sobre él. En el caso de los cuerpos en reposo, se entiende que su velocidad es cero, por lo que si esta cambia es porque sobre ese cuerpo se ha ejercido una fuerza neta.
En realidad, es imposible encontrar un sistema de referencia inercial, puesto que siempre hay algún tipo de fuerzas actuando sobre los cuerpos, pero siempre es posible encontrar un sistema de referencia en el que el problema que estemos estudiando se pueda tratar como si estuviésemos en un sistema inercial. En muchos casos, suponer a un observador fijo en la Tierra es una buena aproximación de sistema inercial.

Segunda ley de Newton o Ley de fuerza

La segunda ley del movimiento de Newton dice que
el cambio de movimiento es proporcional a la fuerza motriz impresa y ocurre según la línea recta a lo largo de la cual aquella fuerza se imprime.
La Primera ley de Newton nos dice que para que un cuerpo altere su movimiento es necesario que exista algoque provoque dicho cambio. Ese algo es lo que conocemos como fuerzas. Estas son el resultado de la acción de unos cuerpos sobre otros.
La Segunda ley de Newton se encarga de cuantificar el concepto de fuerza. Nos dice que la fuerza neta aplicada sobre un cuerpo es proporcional a la aceleración que adquiere dicho cuerpo. La constante de proporcionalidad es la masa del cuerpo, de manera que podemos expresar la relación de la siguiente manera:
F = m a
Tanto la fuerza como la aceleración son magnitudes vectoriales, es decir, tienen, además de un valor, una dirección y un sentido. De esta manera, la Segunda ley de Newton debe expresarse como:
F = m a
La unidad de fuerza en el Sistema Internacional es el Newton y se representa por N. Un Newton es la fuerza que hay que ejercer sobre un cuerpo de un kilogramo de masa para que adquiera una aceleración de 1 m/s2, o sea,
1 N = 1 Kg · 1 m/s2
2da Ley de Newton: Ley de la Fuerza o Principio Fundamental de la Mecánica

La expresión de la Segunda ley de Newton que hemos dado es válida para cuerpos cuya masa sea constante. Si la masa varia, como por ejemplo un cohete que va quemando combustible, no es válida la relación F = m ·a. Vamos a generalizar la Segunda ley de Newton para que incluya el caso de sistemas en los que pueda variar la masa.
Para ello primero vamos a definir una magnitud física nueva. Esta magnitud física es la cantidad de movimiento que se representa por la letra p y que se define como el producto de la masa de un cuerpo por su velocidad, es decir:
p = m · v
La cantidad de movimiento también se conoce como momento lineal. Es una magnitud vectorial y, en el Sistema Internacional se mide en Kg·m/s . En términos de esta nueva magnitud física, la Segunda ley de Newton se expresa de la siguiente manera:
La Fuerza que actúa sobre un cuerpo es igual a la variación temporal de la cantidad de movimiento de dicho cuerpo, es decir,
F = dp/dt
De esta forma incluimos también el caso de cuerpos cuya masa no sea constante. Para el caso de que la masa sea constante, recordando la definición de cantidad de movimiento y que como se deriva un producto tenemos:
F = d(m·v)/dt = m·dv/dt + dm/dt ·v
Como la masa es constante
dm/dt = 0
y recordando la definición de aceleración, nos queda
F = m a
tal y como habíamos visto anteriormente.
Otra consecuencia de expresar la Segunda Ley de Newton usando la cantidad de movimiento es lo que se conoce como Principio de conservación de la cantidad de movimiento. Si la fuerza total que actúa sobre un cuerpo es cero, la Segunda ley de Newton nos dice que:
0 = dp/dt
es decir, que la derivada de la cantidad de movimiento con respecto al tiempo es cero. Esto significa que la cantidad de movimiento debe ser constante en el tiempo (la derivada de una constante es cero). Esto es el Principio de conservación de la cantidad de movimientosi la fuerza total que actúa sobre un cuerpo es nula, la cantidad de movimiento del cuerpo permanece constante en el tiempo.
Esta ley explica qué ocurre si sobre un cuerpo en movimiento (cuya masa no tiene por qué ser constante) actúa una fuerza neta: la fuerza modificará el estado de movimiento, cambiando la velocidad en módulo o dirección. En concreto, los cambios experimentados en la cantidad de movimiento de un cuerpo son proporcionales a la fuerza motriz y se desarrollan en la dirección de esta; esto es, las fuerzas son causas que producen aceleraciones en los cuerpos.
Consecuentemente, hay relación entre la causa y el efecto, esto es, la fuerza y la aceleración están relacionadas. Dicho sintéticamente, la fuerza se define simplemente en función del momento en que se aplica a un objeto, con lo que dos fuerzas serán iguales si causan la misma tasa de cambio en el momento del objeto.
En términos matemáticos esta ley se expresa mediante la relación:
Donde  es la cantidad de movimiento y  la fuerza total. Si suponemos la masa constante y nos manejamos con velocidades que no superen el 10% de la velocidad de la luz podemos reescribir la ecuación anterior siguiendo los siguientes pasos:
Sabemos que  es la cantidad de movimiento, que se puede escribir m.V donde m es la masa del cuerpo y V su velocidad.
Consideramos a la masa constante y podemos escribir  aplicando estas modificaciones a la ecuación anterior que es la ecuación fundamental de la dinámica, donde la constante de proporcionalidad, distinta para cada cuerpo, es su masa de inercia. Veamos lo siguiente, si despejamos m de la ecuación anterior obtenemos que m es la relación que existe entre  y . Es decir la relación que hay entre la fuerza aplicada al cuerpo y la aceleración obtenida. Cuando un cuerpo tiene una gran resistencia a cambiar su aceleración (una gran masa) se dice que tiene mucha inercia. Es por esta razón por la que la masa se define como una medida de la inercia del cuerpo.
Por tanto, si la fuerza resultante que actúa sobre una partícula no es cero, esta partícula tendrá una aceleración proporcional a la magnitud de la resultante y en dirección de ésta. La expresión anterior así establecida es válida tanto para la mecánica clásica como para la mecánica relativista, a pesar de que la definición de momento lineal es diferente en las dos teorías: mientras que la dinámica clásica afirma que la masa de un cuerpo es siempre la misma, con independencia de la velocidad con la que se mueve, la mecánica relativista establece que la masa de un cuerpo aumenta al crecer la velocidad con la que se mueve dicho cuerpo.
De la ecuación fundamental se deriva también la definición de la unidad de fuerza o newton (N). Si la masa y la aceleración valen 1, la fuerza también valdrá 1; así, pues, el newton es la fuerza que aplicada a una masa de un kilogramo le produce una aceleración de 1 m/s². Se entiende que la aceleración y la fuerza han de tener la misma dirección y sentido.
La importancia de esa ecuación estriba sobre todo en que resuelve el problema de la dinámica de determinar la clase de fuerza que se necesita para producir los diferentes tipos de movimiento: rectilíneo uniforme (m.r.u), circular uniforme (m.c.u) y uniformemente acelerado (m.r.u.a).
Si sobre el cuerpo actúan muchas fuerzas, habría que determinar primero el vector suma de todas esas fuerzas. Por último, si se tratase de un objeto que cayese hacia la tierra con una resistencia del aire igual a cero, la fuerza sería su peso, que provocaría una aceleración descendente igual a la de la gravedad.

Tercera Ley de Newton o Ley de acción y reacción

Con toda acción ocurre siempre una reacción igual y contraria: o sea, las acciones mutuas de dos cuerpos siempre son iguales y dirigidas en sentido opuesto.
La tercera ley es completamente original de Newton (pues las dos primeras ya habían sido propuestas de otras maneras por Galileo, Hooke y Huygens) y hace de las leyes de la mecánica un conjunto lógico y completo. Expone que por cada fuerza que actúa sobre un cuerpo, este realiza una fuerza de igual intensidad y dirección, pero de sentido contrario sobre el cuerpo que la produjo. Dicho de otra forma, las fuerzas, situadas sobre la misma recta, siempre se presentan en pares de igual magnitud y opuestas en sentido.
Tal como comentamos en al principio de la Segunda ley de Newton las fuerzas son el resultado de la acción de unos cuerpos sobre otros.
La tercera ley, también conocida como Principio de acción y reacción nos dice esencialmente que si un cuerpo A ejerce una acción sobre otro cuerpo B, éste realiza sobre A otra acción igual y de sentido contrario.
3ra Ley de Newton: Ley de la Acción y Reacción
Este principio presupone que la interacción entre dos partículas se propaga instantáneamente en el espacio (lo cual requeriría velocidad infinita), y en su formulación original no es válido para fuerzas electromagnéticas puesto que estas no se propagan por el espacio de modo instantáneo sino que lo hacen a velocidad finita “c”.
Es importante observar que este principio de acción y reacción relaciona dos fuerzas que no están aplicadas al mismo cuerpo, produciendo en ellos aceleraciones diferentes, según sean sus masas. Por lo demás, cada una de esas fuerzas obedece por separado a la segunda ley. Junto con las anteriores leyes, ésta permite enunciar los principios de conservación del momento lineal y del momento angular.
Esta ley es algo que podemos comprobar a diario en numerosas ocasiones. Por ejemplo, cuando queremos dar un salto hacia arriba, empujamos el suelo para impulsarnos. La reacción del suelo es la que nos hace saltar hacia arriba.
Cuando estamos en una piscina y empujamos a alguien, nosotros también nos movemos en sentido contrario. Esto se debe a la reacción que la otra persona hace sobre nosotros, aunque no haga el intento de empujarnos a nosotros.
Hay que destacar que, aunque los pares de acción y reacción tenga el mismo valor y sentidos contrarios, no se anulan entre sí, puesto que actúan sobre cuerpos distintos.
Fuentes |http://thales.cica.es/rd/Recursos/rd98/Fisica/02/leyes.html
|http://es.wikipedia.org/wiki/Leyes_de_Newton 

MCUA

Movimiento circular uniformemente acelerado
El movimiento circular uniformemente acelerado (MCUA) es un movimiento circular cuya aceleración α es constante.
El movimiento circular uniformemente acelerado (MCUA) se presenta cuando una partícula o cuerpo sólido describe una trayectoria circular aumentando o disminuyendo la velocidad de forma constante en cada unidad de tiempo. Es decir, la partícula se mueve con aceleración constante.
En el dibujo se observa un ejemplo en donde la velocidad aumenta linealmente en el tiempo. Suponiendo que el tiempo en llegar del punto P1 a P2 sea una unidad de tiempo, la partícula viaja con una aceleración tangencial uniforme v, incrementándose esa cantidad en cada unidad de tiempo.

Posición

Dibujo de la posición de una partícula en un movimiento circular uniformemente acelerado (MCUA)
El desplazamiento de la partícula es más rápido o más lento según avanza el tiempo. El ángulo recorrido (θ) en un intervalo de tiempo t se calcula por la siguiente fórmula:

Fórmula del ángulo recorrido por una partícula dependiendo del tiempo en un movimiento circular uniformemente acelerado (MCUA)

Aplicando la fórmula del incremento de ángulo calculamos la posición en la que estará la partícula pasado un tiempo t se obtiene la fórmula de la posición:

Fórmula de la posición de una partícula en un movimiento circular uniformemente acelerado (MCUA)

Velocidad angular

La velocidad angular aumenta o disminuye linealmente cuando pasa una unidad del tiempo. Por lo tanto, podemos calcular la velocidad angular en el instante t como:

Fórmula de la velocidad angular de una partícula en un movimiento circular uniformemente acelerado (MCUA)

El sentido de la aceleración angular α puede ser contrario al de la velocidad angular ω. Si la aceleración angular es negativa, seria un caso de movimiento circular uniformemente retardado.

Velocidad tangencial

La velocidad tangencial es el producto de la velocidad angular por el radio r. La velocidad tangencial también se incrementa linealmente mediante la siguiente fórmula:

Fórmula de la velocidad tangencial de una partícula en un movimiento circular uniformemente acelerado (MCUA)

Dándose aquí igualmente la posibilidad de aceleración negativa que se ha descrito en el apartado anterior.

Aceleración angular

La aceleración angular en el movimiento circular uniformemente acelerado es constante. Se calcula como el incremento de velocidad angular ω desde el instante inicial hasta el final partido por el tiempo.

Fórmula de la aceleracion angular de una partícula en un movimiento circular uniformemente acelerado (MCUA)

Aceleración tangencial

La aceleración tangencial en el movimiento circular uniformemente acelerado MCUA se calcula como el incremento de velocidad v desde el instante inicial hasta el final partido por el tiempo.

Fórmula de la aceleracion tangencial de una partícula en un movimiento circular uniformemente acelerado (MCUA)

Aceleración centrípeta

La aceleración centrípeta en el MCUA se halla mediante:

Fórmula de la aceleración centrípeta en el movimiento circular uniformemente acelerado(MCUA)

Componentes intrínsecas de la aceleración

Dibujo de las componentes intrínsecas de la aceleración en el movimiento circular.
La velocidad tangencial por la trayectoria en un punto P es v. En un intervalo de tiempo pequeño Δt, la velocidad incrementa a v’ en el punto P’, después de haber descrito un ángulo Δφ.
En la figura se puede ver el incremento de la velocidad tangencial Δv descompuesta en dos componentes: la tangencial Δvt y la normal (o centrípeta) Δvn.
Si dividimos ambas componentes de la velocidad por Δt, tendremos las componentes intrínsecas de la aceleración: la aceleración tangencial at y la aceleración normal an (o centrípeta).

Período

En el MCUA la velocidad angular cambia respecto al tiempo. Por tanto, el período cada vez será menor o mayor según si decrece o crece la velocidad angular.

Fórmula del período en el movimiento circular uniformemente acelerado (MCUA)

Frecuencia

La frecuencia en el caso del MCUA es mayor o menor porque la velocidad angular cambia. La fórmula de la frecuencia será:

Fórmula de la frecuencia en el movimiento circular uniformemente acelerado (MCUA)

MCU

Movimiento circular uniformemente acelerado
En física, el movimiento circular uniforme (también denominado movimiento uniformemente circular) describe el movimiento de un cuerpo atravesando, con rapidez constante, una trayectoria circular.
Aunque la rapidez del objeto es constante, su velocidad no lo es: La velocidad, una magnitud vectorial, tangente a la trayectoria, en cada instante cambia de dirección. Esta circunstancia implica la existencia de una aceleración que, si bien en este caso no varía al módulo de la velocidad, sí varía su dirección.

Ángulo y velocidad angular

El ángulo abarcado en un movimiento circular es igual al cociente entre la longitud del arco de circunferencia recorrida y el radio.
La longitud del arco y el radio de la circunferencia son magnitudes de longitud, por lo que el desplazamiento angular es una magnitud adimensional, llamada radián. Un radián es un arco de circunferencia de longitud igual al radio de la circunferencia, y la circunferencia completa tiene 2\pi\, radianes.
La velocidad angular es la variación del desplazamiento angular por unidad de tiempo:
 \omega = \frac{d\varphi}{dt}
Partiendo de estos conceptos se estudian las condiciones del movimiento circular uniforme, en cuanto a su trayectoria y espacio recorrido, velocidad y aceleración, según el modelo físico cinemático.

Posición

Moviment circular.jpg
Se considera un sistema de referencia en el plano x,y, con vectores unitarios en la dirección de estos ejes  (\text{O}; \mathbf i, \mathbf j) . La posición de la partícula en función del ángulo de giro  \varphi y del radio r es en un sistema de referencia cartesiano x,y:
\begin{cases} x = r \cos \varphi \\ y = r \sin \varphi \end{cases}
De modo que el vector de posición de la partícula en función del tiempo es:
 \mathbf {r} = r \cos (\omega t) \mathbf i + r \sin (\omega t) \mathbf j
siendo:
 \mathbf{r} \; : es el vector de posición de la partícula.
 r \; : es el radio de la trayectoria.
Al ser un movimiento uniforme, a iguales incrementos de tiempo le corresponden iguales desplazamientos angulares, lo que se define como velocidad angular (ω):

 \omega = \frac{d\varphi}{dt} = \frac{\varphi}{t}
 \qquad\Rightarrow\qquad \varphi = \omega {t}
El ángulo (φ), debe medirse en radianes:

 \varphi = \frac{s}{r}
donde s es la longitud del arco de circunferencia
Según esta definición:
1 vuelta = 360° = 2 π radianes
½ vuelta = 180° = π radianes
¼ de vuelta = 90° = π /2 radianes

Velocidad tangencial

La velocidad se obtiene a partir del vector de posición mediante derivación tangencial:

\mathbf{v} = \frac{d\mathbf r}{dt} =
-r\omega\sin (\omega t) \mathbf i + r\omega\cos (\omega t) \mathbf j
La relación entre la velocidad angular y la velocidad tangencial es:

{v} = |\mathbf v | = \sqrt {(-r\omega\sin (\omega t))^2 + (r\omega\cos (\omega t))^2} = \omega r
El vector velocidad es tangente a la trayectoria, lo que puede comprobarse fácilmente efectuando el producto escalar \mathbf r \cdot \mathbf v y comprobando que es nulo.

Aceleración

La aceleración se obtiene a partir del vector velocidad con la derivación:

\mathbf{a} = \frac{d\mathbf v}{dt} =
-r\omega^2\cos (\omega t) \mathbf i - r\omega^2\sin (\omega t) \mathbf j
de modo que

\mathbf{a} = -\omega^2 \mathbf r
Así pues, el vector aceleración tiene dirección opuesta al vector de posición, normal a la trayectoria y apuntando siempre hacia el centro de la trayectoria circular, por lo que acostumbramos a referirnos a ella como aceleración normal o centrípeta.
El módulo de la aceleración es el cuadrado de la velocidad angular por el radio de giro, aunque lo podemos expresar también en función de la celeridad v\, de la partícula, ya que, en virtud de la relación v=\omega r\,, resulta

a = \omega^2 r = \frac{v^2}{r}
Esta aceleración es la única que experimenta la partícula cuando se mueve con rapidez constante en una trayectoria circular, por lo que la partícula deberá ser atraída hacia el centro mediante una fuerza centrípeta que la aparte de una trayectoria rectilínea, como correspondería por la ley de inercia.

Período y frecuencia

El período T\, representa el tiempo necesario para que el móvil complete una vuelta y viene dado por:
T=\frac{2\,\pi}{\omega}
La frecuencia f\, mide el número de revoluciones o vueltas completadas por el móvil en la unidad de tiempo y viene dada por:
f=\frac{\omega}{2\,\pi}
Por consiguiente, la frecuencia es la inversa del período:
f = \frac{1}{T}